In this paper , a parametrization describing the kinematical state of the universe via cosmographic approach is considered , where the minimum input is the assumption of the cosmological principle , i.e . the Friedmann-Robertson-Walker metric . A distinguished feature is that the result does not depend on any gravity theory and dark energy models . As a result , a series of cosmographic parameters ( deceleration parameter q _ { 0 } , jerk parameter j _ { 0 } and snap parameter s _ { 0 } ) are constrained from the cosmic observations which include type Ia supernovae ( SN ) Union2 , the Baryon Acoustic Oscillation ( BAO ) , the observational Hubble data ( OHD ) , the high redshift Gamma ray bursts ( GRBs ) . By using Markov Chain Monte Carlo ( MCMC ) method , we find the best fit values of cosmographic parameters in 1 \sigma regions : H _ { 0 } = 74.299 ^ { +4.932 } _ { -4.287 } , q _ { 0 } = -0.386 ^ { +0.655 } _ { -0.618 } , j _ { 0 } = -4.925 ^ { +6.658 } _ { -7.297 } and s _ { 0 } = -26.404 ^ { +20.964 } _ { -9.097 } which are improved remarkably . The values of q _ { 0 } and j _ { 0 } are consistent with flat \Lambda CDM model in 1 \sigma region . But the value of s _ { 0 } of flat \Lambda CDM model will go beyond the 1 \sigma region .