We expand on the dispersion analysis of polarimetry maps toward applications to interferometry data . We show how the filtering of low-spatial frequencies can be accounted for within the idealized Gaussian turbulence model , initially introduced for single-dish data analysis , to recover reliable estimates for correlation lengths of magnetized turbulence , as well as magnetic field strengths ( plane-of-the-sky component ) using the Davis-Chandrasekhar-Fermi method . We apply our updated technique to TADPOL/CARMA data obtained on W3 ( OH ) , W3 Main , and DR21 ( OH ) . For W3 ( OH ) our analysis yields a turbulence correlation length \delta \simeq 19 mpc , a ratio of turbulent-to-total magnetic energy \left \langle B _ { \mathrm { t } } ^ { 2 } \right \rangle / \left \langle B ^ { 2 } \right \rangle% \simeq 0.58 , and a magnetic field strength B _ { 0 } \sim 1.1 \ > \mathrm { mG } ; for W3 Main \delta \simeq 22 mpc , \left \langle B _ { \mathrm { t } } ^ { 2 } \right \rangle / \left \langle B ^ { 2 } \right \rangle% \simeq 0.74 , and B _ { 0 } \sim 0.7 \ > \mathrm { mG } ; while for DR21 ( OH ) \delta \simeq 12 mpc , \left \langle B _ { \mathrm { t } } ^ { 2 } \right \rangle / \left \langle B ^ { 2 } \right \rangle% \simeq 0.70 , and B _ { 0 } \sim 1.2 \ > \mathrm { mG } .