We study the properties of dark matter halos that contain star-forming galaxies at 1.43 \leq z \leq 1.74 using the FMOS-COSMOS survey . The sample consists of 516 objects with a detection of the H \alpha emission line , that represent the star-forming population at this epoch having a stellar mass range of 10 ^ { 9.57 } \leq M _ { \ast } / M _ { \odot } \lesssim 10 ^ { 11.4 } and a star formation rate range of 15 \lesssim \mathrm { SFR } / ( M _ { \odot } \mathrm { yr ^ { -1 } } ) \lesssim 600 . We measure the projected two-point correlation function while carefully taking into account observational biases , and find a significant clustering amplitude at scales of 0.04 – 10 ~ { } h ^ { -1 } ~ { } \mathrm { cMpc } , with a correlation length r _ { 0 } = 5.21 ^ { +0.70 } _ { -0.67 } ~ { } h ^ { -1 } ~ { } \mathrm { cMpc } and a bias b = 2.59 ^ { +0.41 } _ { -0.34 } . We interpret our clustering measurement using a halo occupation distribution model . The sample galaxies appear to reside in halos with mass M _ { \mathrm { h } } = 4.6 ^ { +1.1 } _ { -1.6 } \times 10 ^ { 12 } ~ { } h ^ { -1 } M _ { \odot } on average that will likely become present-day halos of mass M _ { \mathrm { h } } ( z = 0 ) \sim 2 \times 10 ^ { 13 } ~ { } h ^ { -1 } M _ { \odot } , equivalent to the typical halo mass scale of galaxy groups . We then confirm the decline of the stellar-to-halo mass ratio at M _ { \mathrm { h } } < 10 ^ { 12 } ~ { } M _ { \odot } , finding M _ { \ast } / M _ { \mathrm { h } } \approx 5 \times 10 ^ { -3 } at M _ { \mathrm { h } } = 10 ^ { 11.86 } ~ { } M _ { \odot } , which is lower by a factor of 2–4 than those measured at higher masses . Finally , we use our results to illustrate the future capabilities of Subaru ’ s Prime-Focus Spectrograph , a next-generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1 .