Recent spectroscopic observations of galaxies in the Fornax-Cluster reveal nearly unresolved ‘ star-like ’ objects with red-shifts appropriate to the Fornax-Cluster . These objects have intrinsic sizes of \approx 100 pc and absolute B-band magnitudes in the range -14 < { M } _ { B } < -11.5 mag and lower limits for the central surface brightness { { { { \mu _ { B } \mbox { $ \mathrel { \mathchoice { { \mbox { \lower 2.15 pt \vbox { \halign { \cr% } $ \displaystyle \hfil > $ \cr$ \displaystyle \hfil \sim$ } } } } } { { \mbox { \lower 2.15 pt% \vbox { \halign { \cr } $ \textstyle \hfil > $ \cr$ \textstyle \hfil \sim$ } } } } } { { \mbox { % \lower 2.15 pt \vbox { \halign { \cr } $ \scriptstyle \hfil > $ \cr$ \scriptstyle \hfil \sim$ } % } } } } { { \mbox { \lower 2.15 pt \vbox { \halign { \cr } $ \scriptscriptstyle \hfil > $ \cr$% \scriptscriptstyle \hfil \sim$ } } } } } } $ } 23 mag/arcsec ^ { 2 } ( Phillipps et al . 2001 ) , and so appear to constitute a new population of ultra-compact dwarf galaxies ( UCDs ) . Such compact dwarfs were predicted to form from the amalgamation of stellar super-clusters ( Kroupa 1998 ) , which are rich aggregates of young massive star clusters ( YMCs ) that can form in collisions between gas-rich galaxies . Here we present the evolution of super-clusters in a tidal field . The YMCs merge on a few super-cluster crossing times . Super-clusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies ( Whitmore et al . 1999 ) evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs . Less massive super-clusters resembling knot 430 in the Antennae may evolve to \omega Cen-type systems . Low-concentration super-clusters are disrupted by the tidal field , dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the \mu _ { B } - M _ { B } region populated by low-mass Milky-Way dSph satellites .