Using a catalog of 147,986 galaxy redshifts and fluxes from the Sloan Digital Sky Survey ( SDSS ) we measure the galaxy luminosity density at z = 0.1 in five optical bandpasses corresponding to the SDSS bandpasses shifted to match their restframe shape at z = 0.1 . We denote the bands ^ { 0.1 } { u } , ^ { 0.1 } { g } , ^ { 0.1 } { r } , ^ { 0.1 } { i } , ^ { 0.1 } { z } , with \lambda _ { \mathrm { eff } } = [ 3216 , 4240 , 5595 , 6792 , 8111 Å ] respectively . To estimate the luminosity function , we use a maximum likelihood method which allows for a general form for the shape of the luminosity function , simple luminosity and number evolution , incorporates the flux uncertainties , and accounts for the flux limits of the survey . We find luminosity densities at z = 0.1 expressed in absolute AB magnitudes in a Mpc ^ { 3 } to be [ -14.10 \pm 0.15 , -15.18 \pm 0.03 , -15.90 \pm 0.03 , -16.24 \pm 0.03 , -16.56 \pm 0.02 ] in [ ^ { 0.1 } { u } , ^ { 0.1 } { g } , ^ { 0.1 } { r } , ^ { 0.1 } { i } , ^ { 0.1 } { z } ] , respectively , for a cosmological model with \Omega _ { 0 } = 0.3 , \Omega _ { \Lambda } = 0.7 , and h = 1 , and using SDSS Petrosian magnitudes . Similar results are obtained using Sérsic model magnitudes , suggesting that flux from outside the Petrosian apertures is not a major correction . In the ^ { 0.1 } { r } band , the best fit Schechter function to our results has \phi _ { \ast } = ( 1.49 \pm 0.04 ) \times 10 ^ { -2 } h ^ { 3 } Mpc ^ { -3 } , M _ { \ast } -5 \log _ { 10 } h = -20.44 \pm 0.01 , and \alpha = -1.05 \pm 0.01 . In solar luminosities , the luminosity density in ^ { 0.1 } { r } is ( 1.84 \pm 0.04 ) h 10 ^ { 8 } L _ { { } ^ { 0.1 } { r } , \odot } Mpc ^ { -3 } . Our results are consistent with other estimates of the luminosity density , from the Two-degree Field Galaxy Redshift Survey and the Millenium Galaxy Catalog . They represent a substantial change ( \sim 0.5 mag ) from earlier SDSS luminosity density results based on commissioning data , almost entirely because of the inclusion of evolution in the luminosity function model .