We observed the edge-on Seyfert 1.9 galaxy NGC 2992 with the ACIS CCD array on the Chandra X-ray Observatory , and found several extranuclear ( { { { { r \mathrel { \mathchoice { \lower 2.45 pt \vbox { \halign { \cr } $ \displaystyle \hfil > $ \cr$% \displaystyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \textstyle \hfil > $% \cr$ \textstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \scriptstyle \hfil > % $ \cr$ \scriptstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $% \scriptscriptstyle \hfil > $ \cr$ \scriptscriptstyle \hfil \sim$ } } } } 3 ^ { \prime \prime } ) X-ray nebulae within 40 ^ { \prime \prime } ( 6.3 kpc for our assumed distance of 32.5 Mpc ) of the nucleus . The net X-ray luminosity from the extranuclear sources is \sim 2 - 3 \times 10 ^ { 39 } erg s ^ { -1 } in the 0.3 - 8.0 keV band . The X-ray core itself ( { { { { r \mathrel { \mathchoice { \lower 2.45 pt \vbox { \halign { \cr } $ \displaystyle \hfil < $ \cr$% \displaystyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \textstyle \hfil < $% \cr$ \textstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \scriptstyle \hfil < % $ \cr$ \scriptstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $% \scriptscriptstyle \hfil < $ \cr$ \scriptscriptstyle \hfil \sim$ } } } } 1 ^ { \prime \prime } ) is positioned at 9 ^ { h } 45 ^ { m } 41 . ^ { s } 95 - 14 ^ { \circ } 19 ^ { \prime } 34 . ^ { \prime \prime } 8 ( J2000 ) and has a remarkably simple power-law spectrum with photon index \Gamma = 1.86 and intrinsic N _ { H } = 7 \times 10 ^ { 21 } cm ^ { -2 } . The near-nuclear ( { { { { { { { { 3 ^ { \prime \prime } \mathrel { \mathchoice { \lower 2.45 pt \vbox { \halign { \cr } $% \displaystyle \hfil < $ \cr$ \displaystyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { % \cr } $ \textstyle \hfil < $ \cr$ \textstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { % \cr } $ \scriptstyle \hfil < $ \cr$ \scriptstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { % \halign { \cr } $ \scriptscriptstyle \hfil < $ \cr$ \scriptscriptstyle \hfil \sim$ } } } } r% \mathrel { \mathchoice { \lower 2.45 pt \vbox { \halign { \cr } $ \displaystyle \hfil < $ \cr$% \displaystyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \textstyle \hfil < $% \cr$ \textstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $ \scriptstyle \hfil < % $ \cr$ \scriptstyle \hfil \sim$ } } } { \lower 2.45 pt \vbox { \halign { \cr } $% \scriptscriptstyle \hfil < $ \cr$ \scriptscriptstyle \hfil \sim$ } } } } 18 ^ { \prime \prime } ) Chandra spectrum is best modelled by three components : ( 1 ) a direct AGN component from the wings of the PSF , or an electron-scattered AGN component , with \Gamma fixed at 1.86 , ( 2 ) cold Compton reflection of the AGN component with intrinsic absorption N _ { H } \sim 10 ^ { 22 } cm ^ { -2 } , with approximately the same 0.3 - 8.0 keV flux as the direct component , and ( 3 ) a 0.5 keV low-abundance ( Z < 0.03 Z _ { \odot } ) thermal plasma , with \sim 10 % of the flux of either of the first two components . The X-ray luminosity of the 3rd component ( the “ soft excess ” ) is \approx 1.4 \times 10 ^ { 40 } erg s ^ { -1 } , or \sim 5 \times that of all of the detected extranuclear X-ray sources . We suggest that most ( \sim 75 - 80 % ) of the soft excess emission originates from a region between radii of 1 ^ { \prime \prime } and 3 ^ { \prime \prime } , which is not imaged in our observation due to severe CCD pile-up . We also require the cold reflector to be positioned at least 1 ^ { \prime \prime } ( 158 pc ) from the nucleus , since there is no reflection component in the X-ray core spectrum . Much of the extranuclear X-ray emission is coincident with radio structures ( nuclear radio bubbles and large-scale radio features ) , and its soft X-ray luminosity is generally consistent with luminosities expected from a starburst-driven wind ( with the starburst scaled from L _ { FIR } ) . However , the AGN in NGC 2992 seems equally likely to power the galactic wind in that object . Furthermore , AGN photoionization and photoexcitation processes could dominate the soft excess , especially the \sim 75 - 80 % which is not imaged by our observations .