We calculate the absorption probability of photons radiated from the surface of the Sun by a left-handed neutrino with definite mass and a typical momentum for which we choose |p _ { 1 } | = 0.2 MeV , producing a heavier right-handed antineutrino . Considering two transitions the \nu _ { 1 } \to \nu _ { 2 } and \nu _ { 2 } \to \nu _ { 3 } we obtain two oscillation lengths L _ { 12 } = 4960.8 m , L _ { 23 } = 198.4 m , two absorption probabilities P _ { 12 } ^ { abs . } = 2.5 \times 10 ^ { -67 } , P _ { 23 } ^ { abs . } = 1.2 \times 10 ^ { -58 } and the two absorption ranges R _ { 12 } ^ { abs . } = 4.47 \times 10 ^ { 4 } R _ { \odot } = 208.0 au , R _ { 23 } ^ { abs . } = 0.89 \times 10 ^ { 4 } R _ { \odot } = 41.4 au , using a neutrino mass differences of \sqrt { | \Delta m ^ { 2 } _ { 12 } | } = 10 meV , \sqrt { | \Delta m ^ { 2 } _ { 23 } | } = 50 meV and associated transition dipole moments . We collect all necessary theoretical ingredients , i.e . neutrino mass and mixing scheme , induced electromagnetic transition dipole moments , quadratic charged lepton mass asymmetries and their interdependence .