The end of a thermal inflation era , driven by the rolling of a flaton field coupled to the curvaton , cause a huge increment in the curvaton mass and decay rate while the curvaton is still frozen . It is shown that , if this increment is enough for the curvaton to immediately decay , low scale inflation with Hubble parameter H _ { \ast } \sim 10 ^ { 3 } GeV is achieved for more natural values of the flaton-curvaton coupling constant \lambda ( 10 ^ { -10 } \mbox { \raisebox { -3.87 pt } { ~ { } $ \stackrel { \mbox { $ < $ } } { \sim } $~ { } } } \lambda% \mbox { \raisebox { -3.87 pt } { ~ { } $ \stackrel { \mbox { $ < $ } } { \sim } $~ { } } } 10 ^ { -4 } ) and the curvaton bare mass m _ { \sigma } ( m _ { \sigma } \mbox { \raisebox { -3.87 pt } { ~ { } $ \stackrel { \mbox { $ < $ } } { \sim } $~ { } } } 1 GeV ) .